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1 EXECUTIVE SUMMARY 

Predicting the performance of radiation detection systems at field sites based on measured performance 

acquired under controlled conditions at test locations, e.g., the Nevada National Security Site (NNSS), 

remains a standing issue within DNDO’s testing methodology. Detector performance is usually evaluated 

in the performance and operational testing phases, where the measurement configurations are selected 

to represent radiation source and background configurations of interest to security applications. 

We intend to assist DNDO in the process of creating testing procedures that make the testing results 

meaningful for deployment sites. In particular, we aim at estimating the signal response of a system under 

test (SUT) at another field site if measured under exactly the same source configuration used during testing. 

For that, we propose to study how external conditions, like weather, geographical location and site features

are expected to affect the system’s response at field sites, and to develop a methodology able to provide 

an estimate of the system’s response for given external conditions that could be employed to assess the 

system’s performance when deployed at field sites. 

In this manuscript, we have investigated the literature for existing efforts that consider the variability in the 

detector response at field operations, and have define basic guidelines for a field response prediction 

methodology.  Our intent has been to avoid prescribing to any particular performance metric used by DNDO 

during testing. Since background estimation is so fundamental to the problem of source detection, we have 

focused our analysis on considering how to generate detector response data that is representative of the 

deployment sites. In studying this problem, we have so far reached the following interrelated and 

preliminary conclusions:

 Estimating the site background will always involve acquiring data representative of the field 

conditions where the SUT will be deployed.

 Predicting an average background is not enough to demonstrate expected SUT performance if the 

associated background variance at a given field site is large.

 The correct approach should combine the estimation of the background distribution based on field 

data collection with a detection algorithm robust against variations within a given range.

 A background-robust algorithm would need to be trained, at a minimum, on data representative 

of the expected variations at the deployment site.

 A background-robust algorithm used in performance testing would have to be implemented for 

the SUT’s regular field operation in order to realize the predicted field performance.

 An obvious extension of the above ideas is to train the detection algorithm with data collected at 

the field site where the SUT is deployed. In this regard, the focus of the testing phase could shift 

from predicting how the SUT will perform at particular field sites to validating the ability of the 

SUT detection algorithm to predict the correct background expectation given sufficient local data.



2 INTRODUCTION

Predicting the performance of radiation detection systems at field sites based on measured performance 

acquired under controlled conditions at test locations, e.g., the Nevada National Security Site (NNSS), 

remains an unsolved and standing issue within DNDO’s testing methodology. Detector performance can be 

defined in terms of the system’s ability to detect and/or identify a given source or set of sources, and 

depends on the signal generated by the detector for the given measurement configuration (i.e., source 

strength, distance, time, surrounding materials, etc.) and on the quality of the detection algorithm. 

Detector performance is usually evaluated in the performance and operational testing phases, where the

measurement configurations are selected to represent radiation source and background configurations of 

interest to security applications. 

As such, the field performance of a detection system is expected to depend on a variety of factors that 

modify the source and background contributions to the measured detector signal. The cargo type and the 

inspection features, representing variations in measurement configuration will likely affect the source and 

could also affect the background spectra.  Weather and environmental conditions, the geographical 

location and the site features all have a strong effect on the background spectrum but a minimal effect on 

the source term. Detector operational features like energy resolution, efficiency and calibration drifts (e.g., 

due to temperature changes), modify the signal at the detection and acquisition level and thus, will have 

similar effects on both the source and background terms.

This work is intended to assist DNDO in the process of creating testing procedures that make the testing 

results meaningful for deployment sites. Here, we narrow our scope to focus on the signal response of a 

detection system at a field site when measured under the same configuration used during testing. As such, 

variations in cargo type and inspection features are not considered in this work. We focus in the most 

common signals measured with radiation detection systems, which are gamma energy spectrum and gross 

counts, while other signals, like source-emission image, are not considered so far in our analysis. Also, our 

definition of signal response describes the detector output (typically in terms of a spectrum or gross counts) 

to a given source-background conficuration, and is different form the commonly used technical term 

“detector response function” employed to derived the behavior of the detector for arbitrary sources. 

Even though the detector performance is evaluated from the application of an alarm algorithm to its 

spectral response, here we do not attempt to predict the actual detector performance based on any given 

algorithm. We also restrict our scope to fixed or handheld systems for gamma-ray detection used, e.g., at 

international border crossings to detect illicit trafficking of radioactive materials. The screenings at ports-

of-entry (POE) typically comprise primary inspections for alarm generation and secondary inspections for 

alarm adjudication. Primary inspections are usually performed with Radiation Portal Monitor (RPM) 

systems based upon polyvinyl toluene (PVT) plastic scintillator, while secondary inspections employ 

spectroscopic systems, which usually are based upon sodium iodide (NaI) or high purity germanium (HPGe) 

detectors. 

A general and important concept in any detection problem is that the outcome of a detection system will 

normally fluctuate from measurement to measurement, even under “constant” measurement conditions. 



Fluctuations can originate from variations in the underlying physical process (e.g., the emission of 

radiation). They can also arise due to finite resolution limits of the detection system. Moreover, when the 

measurement conditions vary (e.g., either due to changes in the environment or in the measurement 

configuration), it is important to understand how those variations will affect the detection system outcome. 

Thus, in order to evaluate the detection capability of a system, distributions of the detector output without

and with a source present in a given measurement configuration are generally built, corresponding 

respectively to the background-only pB and the source-plus-background pS+B distributions. Those 

distributions are intended to quantize the expected variability in the detection of the given source under 

the given measurement configuration. By defining a threshold on the detector output—which, for example, 

is frequently given in multiples of the background distribution’s standard deviation—detection is declared 

if the measurement lies above the threshold.

In the case of radiation detection systems, the pS+B and pB distributions have minimum width values given 

by the Poisson fluctuations due to the radiation detection’s stochastic nature. When setting any detection 

threshold, the detection system can make false positive  and false negative  errors. The frequency of false 

positive and false negative outputs will depend on the set threshold, and usually enter the system’s 

performance description in terms of Receiver Operating Characteristics (ROC) curves [1]. However, the 

false positive and false negative frequencies strongly depend on the separation between the count rate 

distributions which reflects the signal strength, and on the widths of the count rate distributions which 

reflect the background variance, as illustrated in Figure 1 taken from [2]. In homeland security applications, 

the difficult but interesting scenarios are the detection of weak or shielded sources, where the relative 

separation of pS+B and pb are small. Thus, understanding the background mean and variance is paramount 

to predicting the system performance in that background environment. 

FIGURE 1: SCHEMATIC OF COUNT DISTRIBUTIONS FOR A SOURCE LOCATED IN A STATIC BACKGROUND (TOP), IN THE 

PRESENCE OF SHIELDING AND/OR BACKGROUND SUPPRESSION (MIDDLE), AND IN THE PRESENCE OF NUISANCE 

SOURCES (BOTTOM). THE VERTICAL DOTTED LINE REPRESENTS THE DETECTION THRESHOLD. TAKEN FROM [2].



The problem of estimating the expected radiation background, either as gross count or in its spectral form, 

has received great attention for mobile systems used for radiological source searches since those systems 

are exposed to a higher background variability as they move through the searched area. Thus, the lessons 

learned from investigating background variability for mobile systems will directly benefit our study, and we 

present a summary of some of those methods found in the literature. Even in the case of stationary 

systems, background variations due to motion can arise from background suppression during vehicle 

inspection as the cargo moves through the inspection portal and/or from the motion of the handheld 

system during the inspection of a stopped vehicle. Although those are important effects to study, they are 

not included in this analysis.   

The ultimate goal of this work is twofold: (1) to study how external conditions, like weather, geographical 

location and site features, and the detector operational conditions are expected to affect the system’s

signal response at field sites and (2) to propose a methodology that provides an estimate of the system’s 

signal response for given external conditions that could be employed to assess the system’s performance

when deployed at field sites. The goal of this initial manuscript is more limited: we will investigate the 

literature for existing efforts that consider the variability in signal response at field operations, and will 

define basic guidelines for a field response prediction methodology.  

Large portions of the material presented in this manuscript have been extracted from the cited references, 

in some instances intentionally verbatim. This has been done in order to accurately compile the main 

concepts and ideas as formulated by the researchers of this topic. This document also contains our own 

analysis, conclusions and ideas on detector field response prediction. 

3 GAMMA BACKGROUND VARIABILITY IN THE FIELD

Variation in external factors like environmental conditions, geographical location and site features can 

modify the radiation background rates non-uniformly across the energy range. Variations in background 

rate impact the signal-to-noise ratio as a function of energy and thus can independently change the 

probability of detection for an isotope. In order to understand the origin of gamma background variability, 

we start with a review of the sources of radioactive background typically found in the field. These are mainly 

separated into natural, cosmic and anthropogenic sources of radiation. For special nuclear material (SNM) 

searches, the region of interest (ROI) is usually in the range from 50 keV to 3 MeV. As we will see, most of 

the background radiation is within that ROI. One exception is when detecting neutrons via emission of 

excitation gamma-rays with energies beyond 3MeV [3]. 

3.1 NATURALLY OCCURRING RADIOACTIVE MATERIAL (NORM)
The largest contribution to the natural gamma-ray background originates from the isotopes 40K, 238U, and 
232Th through their decay chains. These isotopes are called primordial since they are believed to originate 

during the early universe and, with half-lives of the order of the age of the earth (5x109 years), they are still 

relatively abundant [4], [5]. Potassium is a major component of the Earth’s crust (2.35%) [6], with 0.012% 

being the radioactive isotope 40K which decays emitting a 1.46 MeV gamma-ray. Uranium is a minor 



component of the Earth’s crust (~ 3ppm), and occurs naturally as the three unstable isotopes 238U 

(99.2742%), 235U (0.7204%), and 234U (0.0054%). The most abundant 238U is the parent of a decay series

which ends in stable 206Pb, with the most energetic gamma-rays of the series emitted by daughter isotope
214Bi ( [7], [8]). Thorium is also a minor component of the Earth’s crust (~12 ppm) [6], and occurs naturally 

only as the unstable radioisotope 232Th which gives rise to a decay series that terminates in the stable 

isotope 208Pb. Similar to the 238U chain, the 232Th daughter isotope 208Tl emits the most energetic gamma-

rays of the series. 235U produces a decay series ending in 207Pb ( [7] [8]); however, 235U is less abundant so 

its contribution to the background is small despite being more radioactive (faster decay) than 238U.

The chemistry for each of these elements dictates their abundance variability in different rock or soil types. 

In what follows, we present a summary of their chemical properties, directly extracted from [5], [6] and [9], 

with the only purpose to illustrate how the concentrations of these elements are expected to widely vary 

across geographical locations according to rock and soil composition. Potassium is found in feldspar1

minerals and micas, and consequently it is relatively high in felsic rocks (granite, etc.) but low in mafic 

basalts2. Potassium released during rock weathering can be transferred to other K-bearing minerals or 

adsorbed into clays.  The efficient uptake of potassium in clays is reflected in its low concentration in sea 

water (380 ppm). Thorium occurs in significant quantities in minor minerals such as allanite, monazite, 

xenotime and zircon. When thorium is weathered out of a mineral it tends to stay in place due to its low 

solubility. Uranium occurs in many of the same environments, minerals and rocks as thorium when it is in 

its less-soluble reduced state U4+. Uranium occurs in minor quantities in oxides and silicates (like uraninite 

and uranothorite respectively) and along grain boundaries. Unlike thorium, uranium also has an oxidized 

state U6+ that is soluble and mobile, but its mobility can be modified by adsorption to hydrous iron oxides, 

clay minerals and colloids. Thus, the concentration of the primordial radionuclides will depend on the 

geology of the detector environment [10]. 

In the U decay series, disequilibrium is common in the natural environment. Disequilibrium occurs when 

one or more decay products are completely or partially removed or added to the system. Restoring the 

equilibrium will depend on the half-lives of the radioisotopes involved [4]. Fractioning of the U decay series 

can be due to both physical and chemical mechanisms. For example, uranium and radium are soluble and 

thus transportable, and depending on the chemistry of the environment, either uranium or radium can be 

preferentially leached out of the system relative to the other [4]. For example, 226Ra can be mobilized in 

high salinity groundwater [6] or can be chemically co-precipitated into oxides or sulfates, adsorbed onto 

the surface of clays, or adsorbed by plant tissue [4]. These disequilibrium-causing processes add more 

variability to the natural gamma background, and thus make it more difficult to predict baseline background 

                                                            

1 Feldspars (KAlSi3O8 – NaAlSi3O8 – CaAl2Si2O8) are a group of rock-forming tectosilicate minerals that 

make up as much as 60% of the Earth's crust. Taken from Wikipedia. 

2 In geology, felsic refers to igneous rocks that are relatively rich in elements that form feldspar and 

quartz. It is contrasted with mafic rocks, which are relatively richer in magnesium and iron.



levels based on geological data since the total gamma activity of the uranium daughters might not correlate 

with the uranium concentration in the ground. 

Another important process causing disequilibrium of the U decay series is the escape of the volatile radon

gas, specifically the isotope 222Rn. With a half-live of 3.8 days, 222Rn has time to diffuse out of solid material 

and into the atmosphere [11]. Since the short-lived 214Bi and 214Pb occur below 222Rn in the 238U decay series 

and are the major gamma-emitters in this series, their contribution to the gamma background from rock 

and soil will be greatly diminished. However, the background activity from 222Rn and its daughter becomes 

susceptible to atmospheric changes: as the pressure decreases, 222Rn in the air builds up until it is washed 

out by the rain [12]. Therefore, the background variability due to 222Rn escape has a time scale given by 

daily weather conditions. 

3.2 TECHNOLOGICALLY ENHANCED NATURALLY OCCURRING RADIOACTIVE MATERIALS (TENORM)
The low mobility of thorium and its daughter in aqueous environments as well as the short half-lives of its 

daughters make the Th decay series less susceptible to disequilibrium [3][4]. The radon isotopes occurring 

in the 235U decay series (219Rn) and 232Th decay series (220Rn) do not tend to cause disequilibrium since their 

half-lives are very short [4]. However, some 220Rn emanation from 232Th decay series can still be measured 

in the atmosphere from the activity of its 212Pb daughter, and its corresponding background level follows 

the same weather dependencies as for 222Rn [11], [12].

Construction materials directly produced from rock and soil contain a wide range of natural radionuclide

concentrations reflecting the geological variation of their site of origin ( [13] and references therein).  

Recycled industrial by-products containing Technologically Enhanced Naturally Occurring Radioactive 

Materials3 (TENORM) are extensively used in the construction industry and the industrial wastes used in 

TENORM as substitute for natural products tend to have a relatively higher concentration of Natural 

Occurring Radioactive Materials (NORM). As a result, the presence of buildings and roads will add a gamma-

ray background to the already existing local radiation from the geological conditions. As measured with the 

mobile system of [14], the background variability due to man-made structures (building, bridges, industrial 

sites) is significant and occurs in a wide range of spatial scales (from few meters to hundreds of meters). 

Applying the conclusions from [14] to fixed RPMs, indicate that each separate RPM at the same POE would 

be subject to a different gamma-ray background dictated by its surroundings structures. 

3.3 COSMOGENIC SOURCES

                                                            

3 Technologically Enhanced Naturally Occurring Radioactive Material (TENORM) is defined as, "Naturally 

occurring radioactive materials” that have been concentrated or exposed to the accessible environment 

as a result of human activities such as manufacturing, mineral extraction, or water processing. 

https://www.epa.gov/radiation/technologically-enhanced-naturally-occurring-radioactive-materials-

tenorm



Cosmic rays originate from extraterrestrial sources and are composed primarily of protons (90%), with 

lesser contributions from alpha particles (9%), electrons (1%) and trace amounts of heavier nuclei and 

gamma rays [15], [16]. Primary cosmic rays are emitted by extragalactic sources and can interact with 

interstellar matter generating secondary cosmic rays. Within our solar system, the sun can also generate 

low energy cosmic rays during solar flares. Upon entering the earth’s atmosphere, cosmic rays can interact 

with atmospheric molecules like oxygen and nitrogen creating air showers of subatomic particles including 

pions, which can quickly decay in secondary showers generating muons, neutrons and other particles. 

A shower can generate on the order of 109 particles, which are narrowly confined along the path of the 

incident cosmic ray. The amount of primary cosmic rays and their secondary particles at the earth’s surface 

is a function of latitude, elevation, and the surrounding environment [17]. These secondary particles can 

decay, emitting gamma-rays, or interact in the environment to contribute to the gamma-ray background. 

However, these gamma-ray background sources tend to be relatively weak in the energy region impacted 

by the terrestrial background described above. 

Cosmic-rays are responsible for most naturally-occurring neutrons on the earth surface, including a small 

contribution from muon-induced spallation and primarily neutron-induced spallation, the so-called “ship 

effect” [17]. As mentioned, these neutrons would have a relatively weak contribution to the gamma-ray 

background through interaction with other materials. Cosmic muons, generated in the atmosphere in 

secondary showers, have a mean lifetime of about 2.2 μs, sufficient to reach the earth’s surface, leading to 

a muon flux at sea level of approximately 170 counts/meters2/second in the United States [15], [16]. Being 

highly energetic, these muons do not get fully absorbed in most detectors but create ionization signals 

proportional to their travel path through the detectors’ active material. As such, muons do not present a 

significant background in the energy region of gamma-rays directly emitted from SNM or other 

radioisotopes of interest for homeland security. On the other hand, muons can create a considerable high-

energy background for larger area detectors like PVTs (see section 4.4) when used for detecting neutron-

induced high-energy gamma-rays [3]. For such detectors, diurnal variation of muon rates, cosmic neutrons 

and cosmic-induced gamma-rays ( [3], [18], [19]) should be considered for a complete characterization of 

the background in the high-energy region [3], [15].

3.4 SKYSHINE 

The skyshine consists of gamma-rays emitted from the ground at great distances from a detector and 

scattered by the air, and contributes a significant amount to the total terrestrial gamma-ray background 

rate. The work in [20] found that the skyshine contributes about 30% to the terrestrial gamma-ray 

background, and it is given by a smooth distribution (except for X-rays) concentrated at the low-energy end 

of the energy spectrum below about 400 keV. As explained by these authors, the skyshine contribution to 

the terrestrial gamma-ray background might be important when inspecting cargo since a moving container 

or vehicle will block the different contributions in different ways, adding more background variability. This 

might be particularly important when attempting to use the low energy gamma-ray emissions for SNM 

identification. 

3.5 ANTHROPOGENIC SOURCES



Some man-made isotopes are incorporated into the radiation background as contamination. The most 

common example are long-lived fission products found in the background as a result of fallout from nuclear 

weapons tests and nuclear reactor accidents [2], [11], [21]. The radionuclide 137Cs, with a 30-year half-life, 

can be found as surface contamination across the United States, Europe, Japan as well as other areas of 

the world ( [22], [23]) and thus, is likely part of the local background in a many POEs. In the event of nuclear 

accidents like the Chernobyl and Fukushima accidents, shorter half-life isotopes like 134Cs, with a 2-year 

half-life, can also temporarily appear as part of the background. Industrial radiography sources, such as 
192Ir, can also create a local background at a POE if present in a nearby industrial building. 

3.6 NUISANCE SOURCES

Nuisance sources are not considered part of the local background (unless they are part of a fixed POE 

structure or present as local contamination) but represent benign sources found in the stream of 

commerce. These are usually separated into medical and industrial isotopes. Materials transported as 

cargo that contain large concentrations of the primordial isotopes, or NORM, also represent nuisance 

sources for portal monitors. Common examples of NORM include fertilizers, granite, abrasives, ceramics, 

etc. [2].

4 DETECTOR SPECTRAL VARIATION DUE TO EXTERNAL FIELD CONDITIONS

The previous section described the variability in the ambient gamma-ray background that any gamma-ray 

detection system will encounter in the field. In this section, we focus on the response of those detection 

systems to the changes in radiation background. We also address how the detector operational response 

can be directly affected by changes in environmental conditions like temperature. The detector response 

is expressed through the energy spectrum, i.e., the event frequency per energy channel, which depends on 

specific detector features such as the detection mechanism or material, resolution, and efficiency. We will 

describe how the spectrum changes according to external conditions causing various levels of measured 

gamma-ray background and/or alteration in the detector operational parameters. We start with a brief 

description of the interaction of gamma-rays with the detector active and surrounding materials, and 

continue with the various detection technologies most commonly used in border security. We categorized 

the detection technologies accoding to the detection material and without referring to any specific 

detector brand, since most of the detector features relevant for the applications of this work will depend 

on the detection material. 

4.1 GAMMA-RAY INTERACTIONS AND THEIR SPECTRUM

The main interaction processes of photons below 3MeV with matter—either the detector media or the 

surrounding materials—are: photoelectric absorption, Compton scattering and pair production [24]. The 

photoelectric effect results in all the energy of the photon being absorbed by the bound electron of an 

atom as kinetic energy plus the emission of an X-ray when the electron vacancy is filled. This is the 

predominant absorption process at low energy levels, with cross-section increasing strongly with atomic 

number. In Compton scattering, the photon loses part of its energy to an electron and is scattered at an 



angle to its original direction. This is the predominant process for moderate energy photons. At higher 

energies, pair production becomes the dominant process. Photons with energies above 1.022 MeV (twice 

the mass of an electron), can be completely absorbed within the electrostatic field of a nucleus with the 

simultaneous creation of an electron-positron pair. The resultant positron will quickly annihilate with an 

electron producing two 511 keV gamma rays. 

In most radiation detectors, the electrons ejected from the gamma interactions will deposit their kinetic 

energies within the detector’s active material producing an ionization or scintillation signal from which a 

spectrum is obtained. The ultimate spectral profile for each detector will depend on detector’s specifics 

like the active material atomic number, the conversion of deposited energy into an electronic pulse, the 

electronic noise, etc. But common to all detectors is that the total energy deposited per incident gamma 

will depend to first order on the detector size. In the case of photoelectric absorption, the photon’s entire

energy will be deposited within a detector’s volume as long as the detector is large enough to stop the 

electron and the X-ray, contributing to the full energy peak. When Compton scattering occurs, the scattered 

photon can either be further absorbed in the detector material (via a photoelectric interaction) so that the 

total energy deposited contributes to the full energy peak, or it can escape the detector. When the latter 

occurs, only a fraction of the original photon energy is deposited which results in a continuum of energies 

below the full energy peak. The intensity of this Compton continuum will depend on the detector size since 

a second photon interaction will be less likely in smaller detectors. In a similar fashion, the two 511 keV 

gamma rays emitted after the positron annihilation following pair creation will have greater chance of 

escaping in smaller detectors. In this case, the energy resulting from a pair production event will contribute 

to either the single- escape, the double-escape or the full energy peak. 

Each background gamma-ray source will contribute to the detector background spectra with its own 

spectral terms—full energy peak, Compton continuum, single- and double-escape peaks, etc.—, 

proportionally to its strength. These background gamma rays can also Compton scatter before reaching the 

detector and add a contribution to the energy continuum that is dependent on their origin within the bulk 

of the source and on the proximity of the detector to surrounding materials. As a result, any non-

background signal that one wishes to detect will be sitting on a background continuum—even if sparsely 

populated for short measurement times—or possibly overlapping with background peaks depending on 

the detector’s resolution.

This complexity of the gamma spectrum measured by a detection system directly impacts source detection

performance. For situations with a low signal-to-background ratio, as is typically the case in homeland 

security applications, the signal detection sensitivity is dependent on accurate estimates of the background.

The most common approach for background estimation in field detection operations is to use previously

measured background data. There is also extensive work on modelling the backgrounds most commonly 

found in field applications ( [20], [25], [26], [27]) to be used in detector and algorithm testing as possible 

substitution to intensive background measurement campaigns. Although such models could be complex, 

they might be still unable to capture in situ spectral changes (e.g., nearby building materials, temperature

changes, etc.) relevant when detecting small signals.  

4.2 HPGE DETECTORS



High purity germanium detectors ( [21], [25], [28], [29]) are the gold standard for gamma-ray spectroscopy, 

with resolutions of typically 1.3 keV (0.2%) full width half maximum at 662 keV. This allows precise 

determination of peak energies, separation of peaks and detection of relatively weak peaks in the presence 

of a strong background; see an example HPGe spectrum in Figure 2. Large volume HPGe detectors are 

cylindrical, and the geometries more typically found in field applications are coaxial and closed-end coaxial 

diode configuration, with volumes up to several hundred cubic centimeters, but the more recent point-

contact cylindrical geometries are gradually becoming more common [28], [29]. They are often quoted as 

percent efficiency at 1332 keV relative to a 3x3 inch NaI(Tl) detector, reaching values greater than 100 %.

FIGURE 2: HPGE SPECTRUM OF AN ENVIRONMENTAL SAMPLE WHICH IS DOMINATED BY THE COMPTON CONTINUUM 

FROM THE NATURALLY-OCCURRING ISOTOPE 40K. THE DETECTOR USED WAS A 115% EFFICIENT, N-TYPE COAXIAL 

DETECTOR IN A LOW-BACKGROUND FACILITY. TAKEN FROM [11].

In the HPGe semiconductor material, the electron-hole pairs created by the gamma-ray-ejected electrons

are swept up by an applied voltage to give an electrical signal. As a consequence, HPGe detectors have the 

disadvantage that they must be operated at low temperatures (less than 100 K) to avoid excessive 

electronic noise from thermally-induced electron-hole pairs. This is normally achieved by connecting the 

detector to a dewar containing liquid nitrogen, or by using electro-mechanical coolers, which tend to be 

more suitable in fixed locations since they only require electrical power. Fixed HPGe systems found in field 

applications are frequently operated in environmentally controlled cabinets that maintain a stable 

temperature [30] for the system’s electronics and facilitate the Ge crystal cooling.  However, systems 

operated in uncontrolled environmental conditions could be subject to significant temperature variations.

The question of whether such ambient temperature variations affect the spectra was studied in [31] for 

several medium size HPGe detectors. For temperatures in the range from ~5oC to ~30oC 4, no significant 

                                                            

4 According to [31], HPGe detector manufacturers Ortec and Canberra recommended to only operate 

their systems within the above range, mainly due to operating limits of the cryo-cooler systems.  Though 

larger temperature ranges can be found in field locations, it might be unreasonable to set up any delicate 



changes in resolution and centroid positions were found for gamma-ray peaks spanning the energy range 

of interest in security applications. Due to the excellent energy resolution of these detectors, small 

percentage deviations from its nominal resolution will normally be irrelevant.

In HPGe detectors, the excellent energy resolution usually provides the ability to estimate the background 

contribution within the energy window of the peaks of interest from the neighboring energy windows—

unless there is an overlap between the signal of interest and background peaks. Ideally, this eliminates the 

need to collect a background spectrum in the absence of the inspected object, and thus reduces systematic 

uncertainties due to possible background changes between those two measurements. However, a higher 

mean background will also have a higher background distribution variance, increasing the false alarm rate 

for a given threshold. Thus, even for HPGe detectors understanding of the level of the background 

continuum is important in order to predict the correct detection sensitivity for a given false alarm rate. 

4.3 NAI(TL) DETECTORS

Thallium activated sodium iodide detectors, NaI(Tl), are commonly used detectors in secondary field 

inspections; they are conveniently available as hand-held detectors, operate at room temperature, and 

have high intrinsic detection efficiency. As with all inorganic scintillator, the gamma-ray-induced electrons 

interact to excite the crystal structure which then decays by emitting photons. These are converted to an 

electrical signal by the use of photomultiplier tubes (PMT) or photodiodes. NaI(Tl) has large light output 

but present a limited energy resolution of about 6 - 8% at 662 keV, see Figure 3. This limits its spectroscopic 

abilities to the identification of only few radionuclides at a time, preferably above a previously known 

background spectrum. The moderate NaI(Tl) resolution implies that variations in background potentially 

have a higher impact on isotope detection capability compared to detection with HPGe. 

FIGURE 3: COMPARISON OF NAI (TOP CURVE) AND HPGE (BOTTOM CURVE) ENERGY SPECTRA FOR A TYPICAL DAY OF 

BACKGROUND IN THE BAY AREA (5.7 HOURS TOTAL). TAKEN FROM [11].

                                                            

electronic system in a configuration where it would be directly exposed to very extreme temperature 

variations.  



Variations in ambient temperature modify the NaI(Tl) crystal light output ( [20], [24], [32], [33], [34] , [35]), 

which changes the scintillation signal gain and thus the final spectrum. In [32], two NaI(Tl) detectors were 

exposed to the range of temperatures from -50oC to +60oC, including the scintillator crystal, the 

photomultiplier tubes and the preamplifiers. Their results show the maximum signal gain at 0oC, and a total 

gain variation of ~30% compared to the lowest gain at -50 oC. For more moderate temperature variations 

within the range 0oC to +20oC, the gain change is much smaller ( [32], [34]) but should still be considered 

when performing spectroscopic measurements. The best resolution was at 20oC (~8% at 662 keV), and 

changed by about 20% between 20oC and -50oC. These authors recommend that any field application of 

these detectors should monitor the detector temperature and incorporate adjustments in the data analysis 

to compensate for the known gain shifts, or alternatively, a constant temperature environment could be 

maintained for the NaI(Tl) scintillators. 

4.4 PVT DETECTORS

Polyvinyl toluene (PVT) scintillator detectors are used in many large-area radiation portal monitor systems. 

Being an organic scintillator, the gamma-ray-induced electrons generate florescence photons that are 

converted to an electrical signal by PMTs. Due to its low average atomic number, Compton scattering is the 

dominantly observed interaction mechanism in PVT detectors between ~20 keV to 20 MeV, the energy 

range generally of interest for illicit nuclear material, which includes the use of PVT as a neutron detector 

via neutron-induced gamma-ray emissions [3], [15]. As such, PVT detectors have negligible full-energy peak 

efficiency and very limited spectroscopic capabilities, see Figure 4, but can be inexpensively built as large 

area detectors. 

FIGURE 4: A PVT BACKGROUND SPECTRUM TAKEN FROM [18]

Natural background gamma-ray rates observed in such large systems are on the order of thousands of 

counts per second. The measured diurnal background variations of gamma rays, as observed in deployed 

RPMs, are illustrated in Figure 5 ( [15], [36]) and amount to about 1% from the mean. The total gamma ray 

oscillations are noted to peak in the late evening hours, and reach a minimum in the late morning hours, 

and is attributed to diurnal fluctuations in the cosmic-ray intensity ( [36]). 



FIGURE 5: AVERAGE DIURNAL RESPONSE OF TOTAL GAMMA-RAY BACKGROUND AS A FUNCTION OF TIME OF DAY,
AVERAGED OVER MEASURED RPM PANELS, LOCATIONS, AND DAYS. TAKEN FROM [36].

The study presented in [3] observed that the output from the PVT detectors is relatively insensitive to 

temperature, but the PMTs exhibit a notable temperature coefficient. Despite the use of coolers regulated 

to 27 0C, the authors of [3] observed substantial gain drifts in a 15-hour period, which was attributed to the 

coolers operation. Though gain adjustment methods are not hard to implement as shown in [3], this 

constitutes another example highlighting how detector operational variability has a strong impact on 

detector field performance and should be thoroughly tested and accounted for in any detection system. 

5 CURRENT APPROACHES TO ACCOUNT FOR BACKGROUND VARIABILITY

In radiation detection systems, proper characterization of the radiation background is essential in order to 

maintain high detection sensitivity and low false alarm rates. When background signatures exhibit large 

variation, alarm thresholds must be set relatively high to void an excess of false alarms, thus reducing 

sensitivity to source signals [37]. Accounting for background variability is especially important in low signal-

to-background ratio scenarios typical in homeland security applications. Such applications are divided into

screening for illicit nuclear material at stationary radiation portal monitors and radiological searches with 

mobile systems. Searches with mobile systems, also referred to as standoff detection, are particularly 

challenging as the background rate not only varies across different locations and environmental conditions

[38], [39], but might not be known or measurable a priori. Hence, there is an extensive and relatively recent 

body of work devoted to reducing the impact of background variation on alarm rates for mobile detection 

systems [11], [14], [26], [27]. In the case of stationary RPMs, the exposure to background variability arises 

from the wide distribution of these systems across the country, as well as from variation in local 

environmental conditions. In that regard, data and techniques developed for mobile search applications 

would be not only informative for stationary radiological detection systems, but can also guide the 

development of algorithms to be employed in system testing to account for the diverse backgrounds in 

field conditions. 

5.1 MAPPING EXTERNAL CONDITIONS TO EXPECTED BACKGROUND SPECTRA FOR MOBILE SYSTEMS



One strategy to mitigate the impact of background variation during search involves extensive 

characterization of the expected background over time and/or space [37]. Characterizing the expected 

background requires establishing a baseline of comparison by cataloguing changes in background prior to 

search and/or tracking those changes during search. As mentioned in [37], one could map the background 

of geographic regions using global-positioning systems and a decision algorithm can then compare 

observations during search to this database of prior measurements. But as also stated in [37], 

environmental and temporal variation may not be fully characterized by such algorithms. Moreover, it is a 

consensus within the search community that the impact of local conditions on the gamma-ray spectrum 

can easily overwhelm the radiation background predicted based on geological radioactivity mapping [10].

An effort to characterize the background radiation according to the specific local scene is presented in [14],

where various environments were surveyed and categorized based on the distribution of background that 

they exhibit. These background measurements were performed with the Mobile Imaging and Spectroscopic 

Threat Identification (MISTI) system, developed by the Naval Research Laboratory, and later renamed as 

the Radiological Multi-sensor Analysis Platform (RadMAP), which comprises an array of 24 HPGe detectors 

and an 10x10 (coded-aperture) array of NaI(Tl) detectors. According to [14], if the measured distributions 

can be correlated to external information about the environment—where such contextual data would be 

provided by other sensors like cameras, weather stations and GPS—, then the background can be estimated 

or even modeled when a mobile system moves to a new location, and the alarm threshold adjusted 

accordingly, providing increased sensitivity (true positive rate) while maintaining specificity (true negative 

rate). In [14], the measured backgrounds were divided into four categories appropriate for the surveyed 

San Francisco Bay Area: bridges, rural, downtown and industrial, Figure 6.   According to [14], specific 

categories would be meaningful not only if they have low systematic variability, but also if they are 

identifiable by some sensors.

FIGURE 6: BACKGROUND PROBABILITY DISTRIBUTIONS FOR FOUR TYPICAL ENVIRONMENTS: BRIDGES (BLUE), RURAL 

AREAS (GREEN), DOWNTOWN OAKLAND (BLACK), AND THE JACK LONDON DISTRICT (INDUSTRIAL WAREHOUSES, RED).
TAKEN FROM [11].

It is worth noticing that a posterior study presented in [40] using the same data of [14] shows that the 

background not only adds statistical Poisson noise to the detection, but can also vary systematically as the 

detector moves from one location to the other producing a much wider systematic uncertainty that should 

be considered when setting detection thresholds. These considerations are important when using source 

injection to predict detector performance. 



Background modelling is another approach to characterize the expected background spectrum. As 

mentioned in [14], the information provided by background measurement campaigns can be the input to 

modelling efforts attempting to predict the background distribution that a given detector system would 

observe. In [25], a gamma-ray background model for a typical urban environment is created by simulating

the response of a typical coaxial HPGe detector with the Monte Carlo-based Geant4 toolkit [41] and 

matching it with observed data. Though [25] succeeds in satisfactorily approaching the measured data, 

their multi-stage process reveals the difficulties to account for all background lines and scatter radiation 

contributing to the final spectra. Another example of background modeling is presented in [20], where the 

terrestrial background spectrum expected from the three families of isotopes, 40K, 232Th and 235U/238U, 

measured with a HPGe detector in an open space location at a seaport is modelled using the Monte Caro 

N-Particle (MCNP) transport code [42]. In contrast with [25], this work manages to match with good 

agreement the simulation and measured spectra using simple scaling of each family of isotopes; only at 

energies below 400 keV the difference is about 30%, which the authors discovered is due to lack of 

accounting for the skyshine effect. Once the skyshine, cosmic and terrestrial gamma backgrounds are 

considered, the simulation of a NaI(Tl) detector spectra in [20] achieves an excellent match with data 

collected in an open field site. This work might suggest that modelling the detector spectra in an open site 

or field, without unknown contributions from nearby structures or buildings, is possible with acceptable 

accuracy and effort.

Another current effort relevant to search applications combining data collection and modelling is the Multi-

agency Urban Search Experiments (MUSE) [26], [27]. Though no peer-reviewed publications on MUSE are 

available at this time, [26] states that the goal of MUSE is to develop a comprehensive operational radiation 

transport modeling framework that is validated and quantified against the newly collected benchmark data 

sets in order to systematically evaluate detector system and algorithm performance. From [27], the 

synthetic dataset ensemble that MUSE aims to generate and benchmark should cover different background 

compositions and variability that can be used to test algorithm performance over a variety of parameters.   

5.2 ALGORITHMS ROBUST AGAINST BACKGROUND VARIATIONS FOR MOBILE SYSTEMS

A common strategy to account for diverse radiological backgrounds is the use of algorithms that enable 

background estimation without comparing against a measured background spectrum specific to the 

measurement scene and moment, or an expected background spectrum based on external conditions. 

Typically, these detection algorithms train on previously measured background data that is supposed to 

contain all the variability expected in the measurement scene, so that their outcome (threat/no threat, 

isotope identification, source location, etc.) is robust against variations in the background. The list 

presented below is not intended to be comprehensive, but to give the flavor of this approach through some 

examples. Also, it represents what we have found so far in our literature search, thus important methods 

unknown to the authors might be unintentionally omitted. In this section, we focus on methods applied to 

data from mobile systems. In many cases the same methods could be easily adapted to fixed systems like 

portal monitors or to handheld detectors used in “walkthrough” measurement scenarios. 

5.2.1 REGION-OF-INTEREST ALGORITHMS



Typical region-of-interest (RoI) algorithms estimate the background under the signal peak using energy 

windows immediately on the sides of the energy window of interest. Using the NaI detector data collected 

with RadMAP, [43] presents a modification of the typical RoI method where the background windows are 

not necessarily chosen next to the photo-peak window when previous background measurements are 

available. In that case, the estimation of the background is represented to first order by B = a0 + a1B1+a2B2, 

where the linear terms a1 and a2 represent the contribution from the neighboring windows, and a0 is the 

mean excess in the photo-peak window. The counts in the neighbor windows B1 and B2 add additional 

statistical noise, but allow the systematic variance (due to the background variability in mobile searches) to 

be reduced. The factors ai are generated using a separate day of background data as a training set to provide 

the values of B, B1 and B2 and fitting them to the above equation using least squares regression. In [43], this 

background estimation based on training tends to improve performance; however, this effect depends on 

how well the training set is representative of the full variability encountered in the field. 

A similar background estimation technique is described in [44] and [45] under the name Energy Windowing 

Regression. In their case, the windows selection is based on match filtering to a source template in order 

to select a range of energies (called the source window �) likely containing the source signal. By linearly 

regressing the background gamma counts of training data outside the source window (call those energy 

bins �� ), the number of background gamma counts inside the source window � can be predicted. In [44],

Least Squares estimator and Ridge Regression estimator are also presented. 

5.2.2 POISSON CLUTTER SPLIT ALGORITHM

According to [46], traditional RoI detection algorithms are unable to effectively account for natural 

radiological backgrounds and their variation, which has led to the development of more advanced 

algorithms that are capable of accurate estimation of the background using information from the entire 

spectrum [2], [47], [48]. In [46], the detection sensitivity from their Poisson Clutter Split (PCS) algorithm 

[49] is compared to the results from the application of the modified RoI algorithm of [43]. Using source 

injection on RadMAP background data, [46] shows that PCS improves the probability of detection (for fixed 

false alarm rate) compared to the RoI algorithm. What makes the PCS algorithm interesting for our proposal 

is the claim that it can mitigate the two sources of randomness in the radiological spectra: the background 

clutter, i.e. changes in the energy-dependent count rate due to variations in isotopic composition at 

different locales, weather conditions, etc..., and the random nature of radioactive decay. According to [46],

[49], PCS uses a probabilistic representation of radiological backgrounds, modeling of gamma-ray counts 

based on Poisson statistics, and a Generalized Likelihood Ratio Test (GLRT) to simultaneously perform 

detection and identification. The PCS background clutter model encompasses the mean rate spectrum and 

the dominant and non-linear modes of spectral variation ��⃗ = ��⃗ (���⃗ ), and the probability distribution of the 

coefficients �(���⃗ ). The probabilistic model of background rate clutter in combination with the Poisson 

model for count spectra given the rate is used to calculate the likelihood g of a test spectrum as a function 

of background parameters and source strength. For the test spectrum, g is maximized assuming either the 

“source presence” hypothesis H1 or the “background only” hypothesis H0, and the ratio of the maximized

likelihoods under each hypothesis, � = ����(��) ����(��)⁄ ,  is compared to a predefined threshold set 

based on an operationally relevant constant false alarm rate. 



The PCS algorithm has been applied to other portal and urban detection systems that operate in low signal-

to-noise regimes. In [49] and [50], performance enhancement was demonstrated for existing Advanced 

Spectroscopic Portals (ASP), Standoff Radiation Detection Systems (SORDS) and handheld Radio-Isotope 

Identifier Devices (RIID) such as Smiths’ RadSeeker. However, since the PCS algorithm is proprietary 

information of Physical Sciences Inc., no details are available in the literature on how the background model 

is constructed and how the mean background rate as a function of energy as well as the dominant and non-

linear modes of spectral variation are calculated. Communication with one of the authors of [46] indicates 

that these modes are Principal Component Analysis [PCA] describing the background spectra.

5.2.3 BAYESIAN AGGREGATION ALGORITHM

In [45] (and more extensively in [44]), another method is presented to account for expected variations in 

background and common potential nuisance sources causing false alarms in urban searches with mobile 

spectrometers. Named Bayesian Aggregation (BA), this method relies on field data and injected synthetic 

sources to learn statistical models of expected threats. BA receives as input radiation spectra and map 

locations of measurements, and has the three following key stages. The first stage is to estimate the Signal-

to-Noise Ratio (SNR) of a measurement in terms of its source signal and background noise components. 

Once the SNR is estimated, location, velocity, and other positioning information can help quantify the 

expected exposure to a source. The second stage builds a probabilistic sensor model that can score whether 

the measurement follows the expected exposure-SNR trend for a point source at hypothetical source 

locations on the map. Finally, evidence is spatially aggregated across multiple observations using Bayesian 

data fusion to robustly test these hypothetical source locations and render a threat probability map. 

The first phase of the BA algorithm involves training a SNR estimator with single measurements, which in 

the case of [45] correspond to measurements collected in a field region allocated for “training” in the data. 

Two methods are discussed for training a measurement SNR estimator: anomaly detectors (based on 

Principal Components Analysis) and match filters (based on Energy Windowing Regression). The second 

phase of BA training involves building probabilistic sensor models of expected SNR score distributions as a 

function of source exposure (i.e., measured source rate). The probabilistic sensor models are estimated 

from actual (and source-injected) field data, and can be robustly estimated using nonparametric density 

estimation [51]. The score distribution for negative data (pure background data) forms the null distribution 

(H0), and the score distribution obtained for source-injected data becomes the alternate (H1) probability 

distribution. The next step of BA is to spatially combine evidence as it is collected. For a given terrain, the 

scene can be covered with a set of hypothetical source locations; as new measurements are collected and 

added to the overall data D, BA maintains and updates estimates of the probabilities P(H1|D) for each 

source hypothesis and each null hypothesis P(H0|D). 

The authors benchmarked the BA algorithm in comparison to an alternative method of evidence 

aggregation currently used in the field called the Weighted Combining (WC) Method [52], improving 

performance. We have not yet reviewed this latter method. We have not found comparison of this method 

to other methods that do not use data aggregation (i.e., using Bayesian probability aggregation of spectra 

collected along the mobile detector path). Though this BA method has been prescribed to be used with 

mobile systems, in the case of a fixed portal inspecting a moving vehicle, spectra before and after the 



vehicle occupancy could be aggregated to create a more complete probability density of the null or 

alternative hypothesis. Note also that this algorithm relies on source injection, and not on source 

measurements, to generate the alternate (H1) probability distribution.

5.3 ALGORITHMS ROBUST AGAINST BACKGROUND VARIATIONS FOR PORTAL SYSTEMS

5.3.1 PRINCIPAL COMPONENTS ANALYSIS

The Principal Component Analysis (PCA) of spectral information has already been mentioned as an element 

of two of the algorithms for mobile systems described above. Here, we present its use in [53] for the 

spectroscopic analysis of RPM data. In general, this technique is based on anomaly detection, i.e., 

identifying radiation signatures that are inconsistent with benign sources, which is in contrast to many 

isotope identification techniques that attempt to identify signatures consistent with specific nuclear 

threats. In concept, PCA uses eigen analysis of the covariance matrix empirically estimated from the data 

to make a transformation matrix; multiplication by the transformation matrix transforms the data from a 

set of interrelated original variables to uncorrelated principal components (PCs) that retain the total 

variance of a data set, but with a zero-mean shift. 

The study in [53] attributes the systematic spectral variability to benign sources given by cargo of ordinary 

commodities like fertilizer, granite, bananas, etc., or simply to the presence of the intervening cargo. 

Though not mentioned in [53], weather variation might also contribute to the variability of their data set 

depending on the time taken to collect the 2000 vehicle spectra used in their analysis. Their PCA result are 

promising in discriminating anomaly sources from common NORM sources, but are not compared with the 

performance of other detection algorithms on the same data. 

5.3.2 ERNIE

The Enhanced Radiological Nuclear Inspection and Evaluation (ERNIE) tool, presented in [54], is a computer 

application that uses machine learning analysis to distinguish threats from non-threats in RPM data. Their 

machine learning model trains on archival RPM scans, extracting available information from the radiation 

and the vehicle presence sensors. The radiation information includes 8 spectral windows, total counts or 

intensity, and a spatial distribution of the counts along the inspected vehicle. The model “learns” about 

potential threats and uncommon sources through augmented RPM scans injected with modelled threat 

signatures. One aspect relevant to this work is that, according to [54], a “typical expected background” is 

paired with the measured gamma-ray time profile of each inspected vehicle; however, it is not explicitly 

described in [54] how the expected background time profile is created.

As output, ERNIE provides the most likely classification of radioactive source type and location, as well as 

recommended action (Release or Investigate). Machine learning classifies each scan using a Random Forest 

of decision trees. It is not clear from [54] if the full or the background-subtracted spectrum is used to 

determine the classification.  The effectiveness of ERNIE in identifying most NORM cargo and medical 

sources reduces secondary inspections by close to an order of magnitude without reduction in sensitivity 

to other radioactive cargo, while it also provides the source type and location within the inspected vehicle. 

Since the algorithm is trained with local data, the results are port specific. 



5.3.3 OTHER METHODS MENTIONED IN THE LITERATURE

The authors of [46] also list other advanced algorithms that are capable of accurate estimation of the 

background using information from the entire spectrum: the utilization of ratios of counts within spectral 

windows to suppress background variability [55], application of principal components analysis and 

maximum likelihood estimation [47], [53], algorithms that seek to match pre-computed spectral templates 

[56], [57] and attempts to use neural networks [58]. 

6 CONSIDERATIONS FOR A FIELD RESPONSE PREDICTION METHODOLOGY

The purpose of this work is to estimate the signal response of a radiation detection system at any field site 

based on its measured response to a radiation source acquired under controlled conditions at test 

locations, e.g., the NNSS. To narrow the scope of the problem, we start by focusing on estimating the signal 

response of a system under test (SUT) at another field site if measured under exactly the same source 

configuration used during testing. Without loss of generality, we assume that the SUT has spectroscopic 

capabilities, and thus the measured signal is an energy spectrum. The spectrum measured at the NNSS, 

here denoted as ���� , when measuring a given source configuration A, can be decomposed into a 

background term ���� and a source term ��, 

���� = ���� + ��.

The spectrum ���� is the SUT response to the incident source and background radiation, and thus depends 

on the SUT type and its specific parameters. The label A indicates the source contribution to the spectrum 

according to all parameters that distinguish a given source configuration: source type and strength, 

distance and position relative to the detector and surroundings, motion with respect to the detector, 

presence of shielding or other cargo materials and measurement time. If the source term �� could be 

accurately estimated, the problem of predicting the spectrum �� = �� + �� that would be obtained if the 

same source configuration were measured at a field site F reduces to estimating the background term ��

at site F.  

The detector’s source response �� can be isolated in two ways. One conceptually simple way is to measure 

the background ���� without the source present and subtract it from ���� to get ��̅ = ���� − ���� . 

Another approach is to estimate �� through simulation. In order to validate and tune the simulation model, 

the simulated ��� can be statistically injected on the measured background ����   and the resultant ����� =

���� + ��� is compared to the measured ���� [11]. In the modeling of ��, variations due to changes in 

the detector operational characteristics that would also affect the source spectral contribution (e.g., due 

to temperature-induced gain drifts) should be considered. Once estimations of the mean background rate

�� for a field site F and of the contribution �� from a source in configuration A are available, they can be 

Poisson sampled to create a dataset of synthetic measurements {��} from where ROC curves, or any other 

relevant figure-of-merit, are generated according to the system’s detection algorithm.



Estimating the background �� will always involve acquiring data representative of the field conditions 

where the SUT will be deployed. For DNDO, the question is what measurements are necessary and 

sufficient to validate the SUT detection performance at all of the country’s POEs in a manner credible to 

their stakeholders. Even though in this work we focus on generating a methodology for the prediction of 

the background �� to be used in testing, our conclusion as presented in the next section is that predicting 

an average background is not enough to demonstrate expected SUT performance if the associated 

background variance at a given field site is large. Besides the statistical Poisson noise, changing background 

rates can introduce systematic variation in the background distribution expected for a given field site. The 

correct approach should combine background estimation based on field data collection with a detection 

algorithm robust against variations within a given range. Thus, the initial goal of estimating the background 

�� should be expanded to include the design and demonstration of such detection algorithm.  

6.1 ESTIMATING THE BACKGROUND TERM BF AND ITS VARIANCE

As it has been illustrated in section 3, the radiation background across all country’s POEs is expected to vary 

widely according to its geological location and local scene. To denote such spatial variability, we use the 

index X so that �� identifies the background originating from the spatial features of the field site. For 

example, X could simply label each POE by name. Others have shown ( [11]) that it is also possible to group 

the backgrounds �� due to the local scene into categories that contain a smaller variance within 

themselves, so that X could then be a categorical variable taking values like “industrial, rural, downtown, 

bridges, building interior, open field, etc.” Figure 6 shows the background counts of naturally occurring 

backgrounds lines separated into four distributions according to the local scene [11]. 

Besides varying by location, the background spectrum of any fixed field site is also expected to change due 

to daily and seasonal weather variations. To denote those temporal variations, we add the index T to the 

background term ��,�. Ideally, numerical weather parameters like temperature, pressure, humidity and 

time after precipitation would correspond to a background expectation. Categorical variables like time of 

the day (morning, midday, night) and day in the year or season could also be mapped to an expected 

background, but doing so would basically amount to using weather parameters. Thus, the background of a 

given field site labeled above with index F should be thought of as being described by the site’s spatial 

features X and by temporal variations T. 

The most accurate prediction of the SUT response ��,� would ideally come from measuring it at each

planned deployment site. To account for temporal variations T at a given fixed site X, measurement of 

��,� should be performed covering the characteristic span of T for that POE, which would imply measuring 

at different times of the day and seasons. The results of such an arduous and likely not plausible

measurement campaign could be used in several ways. If the spectral variance resulting from T variations 

is small, a mean spectrum  〈��,�〉� averaged over the T space could be reported. A measure of the variance 

of the dataset can be calculated using the total counts in selected energy windows, which for example 

could correspond with representative background lines (e.g., the main lines from the three primordial 

decay chains) or with representative SNM lines.  The variance of the dataset would be considered small if 

its square root is comparable to the Poisson noise for the mean �〈��,�〉�. 



If ��,� varies widely over the T space, a library of backgrounds 〈��〉�(��) could conceivably be created by 

binning the T space and averaging the measurements over each bin �� . If the measured spectra ��,� define 

separate distributions when sorted by categories �� like, e.g., the time of the day or the day of the year,

the library elements could be given by the distributions means 〈��〉�(��). Cluster analysis techniques [51]

applied to the collected background spectra based on some degree of similarity (to be defined) could 

uncover their dependence on �� or �� . We have not found examples in the literature where mapping 

temporal features with an expected background has been attempted; whether this approach is at all 

possible remains to be studied with actual data. 

It is clear that any one background term �� to be inserted in �� = �� + �� —in order to predict the 

response at site F—will not cover the full response variability expected in site F, even if measured at the 

given site. Besides, measuring the background at all deployment sites with the SUT is likely not a practical 

solution, and mean background spectra according to local scene features will most likely be used instead. 

Thus, we conclude that, in order to be confident on the predicted performance, the SUT detection 

algorithm should be robust against the background variance expected at the given field site F. 

Although in this work we are limiting our focus to improving the SUT’s performance testing phase and not 

its operation, the two phases are obviously linked. The results of the SUT performance test cannot be 

separated from its detection algorithm, and therefore, any recommendation for a background-robust 

algorithm would have to be implemented for the SUT’s regular field operation in order to realize the 

predicted field performance. In section 5.2, several algorithms accounting for the background variability in 

urban searches with mobile systems were discussed. This manuscript is intended only to frame the 

problem, and thus, we postpone for the project’s next phase the task of developing the appropriate 

algorithm applicable to portal and handheld systems. What is clear based on the discussion of section 5.2

is that any background-robust algorithm would need to be trained, at a minimum, on data representative 

of the expected variations at the deployment site. 

6.2 UNFOLDING THE BACKGROUND FLUX

In the previous section, the term �� is assumed to represent the detector’s measured response to a 

radiation background flux incident on the detector from all directions. Hence, �� not only depends on the 

incident radiation, but also on the detector features like size, efficiency, resolution, orientation, etc. Hence, 

background data collected with a detector other than the one undergoing testing, even if both are of the 

same technology, could contain systematic variations not representative of the field background but of the 

difference between the two detectors5.

A solution could in principle be to unfold the incident background flux �� from the measured response ��, 

so that �� is assumed to be independent of the detection system. A collection of background fluxes ���,��  

would then be created to capture the local background variance as described in the previous section. 

However, the unfolding algorithm might introduce systematic errors beyond those due to the site’s 

                                                            

5 Some algorithms, like GADRAS, can account for detector response differences



background variability.  In this approach, the SUT’s detector response function would be used to generate 

an expected background response ��� for the SUT at field site F. This constitutes another disadvantage since 

the SUT response function would either have to be provided by the vendor or modeled as part of the 

performance testing phase. In either case, experimental data should be used to quantize systematic errors 

introduced by SUT response function, which could be part of the testing phase at NNSS by using known 

source and background fluxes. On the other hand, creating a background flux dataset ���,�� that is 

independent on the detection system allows testing a variety of detector technologies for expected 

performance at field site F. 

6.3 IN SITU BACKGROUND TRAINING AND PREDICTION

An obvious extension of the ideas presented in the previous section is to train the detection algorithm with

data collected at the field site where the SUT is deployed. In this regard, the focus of the testing phase

could shift from demonstrating how the SUT will perform at particular field sites to validating the ability of 

the SUT detection algorithm to predict the correct background expectation given sufficient local data.  

This approach has numerous advantages. Radiation portal monitors can collect background data 

continuously with minimal effort. Since these are fixed systems, only the temporal effects, like the daily 

and seasonal weather variations discussed above or the presence of cargo, would contribute to the 

background variability. The temporal ambient features would be recorded with extra sensors, like a 

weather station at each RPM. More importantly, each portal monitor at the same POE should be able to 

generate its own background expectation according to its surroundings—presence of a nearby wall, 

exposed to the sun or shade, etc.—, which could be different from the expectation for an identical system 

positioned differently in the same POE. Moreover, the SUT algorithm could retrain itself frequently with 

new data, which becomes relevant if the surroundings change. 

The in situ data training could be used to generate a prediction of the expected background contribution 

during a vehicle inspection based on current sensors data. Creating an expectation of the background based 

on a large sample size dataset that is correlated with the conditions during the actual inspection should 

increase confidence in source detection, compared to employing a background expectation based on one 

or just few recent background measurements. Whether it is possible to map the sensors readings �� to an 

expected average background spectra 〈��〉�(��) with small variance still has to be demonstrated, but it 

constitutes an interesting unsupervised machine learning problem. Principal Components (PC) computed 

according to local background data, , that estimate the expected background contribution —but not 

necessarily the full background spectrum—could be used to identify anomalies in the vehicle’s measured 

spectra �� indicative of the presence a non-background source. The Bayesian Aggregation and the Poisson 

Clutter Split methods presented above for mobile systems are examples of algorithms that use PC analysis 

trained with measured data and claim robustness against background variability. 

The ERNIE tool presented in section 5.3.2 is one example of supervised machine learning applied to identify 

nuclear threats. Another example is presented in [59], where classification methods were used and 

compared in their ability to recognize SNM threats. In these examples, the training set included SNM 

sources in order to create the various output classes of interest. However, using actual SNM sources is not 

a practical alternative in field deployments. As done for ERNIE, SNM source terms could be injected into 



the locally measured backgrounds in order to create a training set representative of a given SUT 

environment. Thus, it might then be the job of the DNDO testing phase to create or test the SUT-

appropriate synthetic source terms to be used with the supervised learning algorithms. 

7 CONCLUSIONS AND RELEVANCE TO DNDO

There is plenty of evidence in the literature that the response of radiation detection systems depends on 

the conditions at the deployment sites. These external conditions can be separated into fixed site 

background features, like geological and construction features, and time-varying features, like 

meteorological conditions. As discussed in this manuscript, variations in external conditions across field 

sites can produce large variations in the background gamma radiation incident on the detection system, 

which then produce corresponding variations in the system’s spectral response across field sites. 

Temperature variations during field operation can change the detection system’s operational parameters, 

and thus, change its spectral response. 

When testing the performance of a detection system, DNDO testing procedures include exposing the SUT 

to source materials and configurations of interest. As such, testing will be usually done in locations where 

relevant quantities of SNM can be used, like the NNSS. The resulting SUT performance is given in terms of 

the statistical confidence in source detection and rejection, which depends on the estimation of the 

background contribution during the measurement. However, the background conditions at the testing 

location will usually not cover the variability in background across the field sites where the detection system 

will be deployed. This implies that decisions be made based on data from unrealistic environments that are 

irrelevant for field deployment. Our aim is to assist DNDO in creating testing procedures that make the SUT 

testing results meaningful for deployment sites.  

From the beginning of this work, our intent has been to formulate such testing procedure in the most 

general way, without prescribing to any particular performance metric used during DNDO testing. Since 

background estimation is so fundamental to the problem of source detection, we have then focused on the 

problem of formulating testing procedures that will allow DNDO to generate spectral response data that is 

representative of the deployment sites. In studying this problem, we have so far reached the following 

interrelated and preliminary conclusions:

 Estimating the site background will always involve acquiring data representative of the field 

conditions where the SUT will be deployed.

 Predicting an average background is not enough to demonstrate expected SUT performance if the 

associated background variance at a given field site is large.

 The correct approach should combine the estimation of the background distribution based on field 

data collection with a detection algorithm robust against variations within a given range.

 A background-robust algorithm would need to be trained, at a minimum, on data representative 

of the expected variations at the deployment site.



 A background-robust algorithm used in performance testing would have to be implemented for 

the SUT’s regular field operation in order to realize the predicted field performance.

 An obvious extension of the above ideas is to train the detection algorithm with data collected at 

the field site where the SUT is deployed. In this regard, the focus of the testing phase could shift 

from predicting how the SUT will perform at particular field sites to validating the ability of the 

SUT detection algorithm to predict the correct background expectation given sufficient local data.

We plan to focus the next stage of this work on directly demonstrating the above conclusions with actual 

data collected with a detector model relevant to DNDO testing and field operations. We will also work 

towards demonstrating a testing procedure for that specific detector model that produce performance 

results meaningful for general deployment sites. 
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